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INVESTIGATION OF NONLINEAR OSCILLATIONS OF A GAS IN OPEN PIPES 

R. G. Galiullin and G. G. Khalimov UDC 534.222.2 

Results are presented of measurements of velocity and pressure fluctuations in 
a pipe, open at one end, for nonlinear oscillations, excited by a piston describ- 
ing harmonic motions, in the linear and nonlinear resonance regions. 

It is known that nonlinear oscillations lead to a considerable intensification of var- 
ious heat and mass transfer processes [i], and this subject has therefore been investigated 
in many papers [2-24], which have studied the oscillations occurring in pipes. In some of 
these [2, 3, 16-24] oscillations in closed pipes have been studied, where a piston is moving 
harmonically at one end, and the other end, the passive end, is closed by a diaphragm. Other 
papers [2-15] have examined oscillations when the passive end is open to the surrounding 
medium. 

Periodic shock waves [3, i0, 13, 20, 24] can arise both in open and in closed pipes. 
The amplitude of pressure oscillations in closed pipes is proportional to the power n = i~ 
of the piston movement amplitude [2], while opinion varies as to the nature of the relation- 
ship in open pipes: some investigators assume n = i~ [2], while others [6, 7] take n = 1/2. 

We note that, along with a linear resonance at frequencies 

( 2 k - - l )  ~ao (1 )  ~ k =  , k =  i,  2, 3 . . . .  
2L 

nonlinear resonances with 

4L (2) 

may occur in open pipes, their existence being predicted theoretically in [12, 14, 15] and 
verified experimentally in [13]. 

The great majority of authors [3, 6, 9, 13, 20] have limited their measurements to pres- 
sure oscillations, and only in [5, 7] have attempts been made to measure velocity fluctua ~ 
tions, but these were conducted in the comparatively slight nonlinearity region, where the 
fluctuations are continuous functions of time. However, it is clear that full information 
on the oscillations can be obtained only with simultaneous measurement of pressure and velo- 
city. 

The present paper has attempted a simultaneous investigation of pressure and velocity 
fluctuations in open pipes, where shock waves may originate from the open end in the fre- 
quency region of linear and nonlinear resonances. 

Longitudinal oscillations of the gas column were created in a pipe with one end closed, 
while at the other end a plane piston was moved according to an harmonic law. In order to 
maximize the amplitude of oscillations, a compressor was used with a piston stroke of 21o = 
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0.086 m. The piston diameter was 2Ro = 0.077 m. The motion of the crankshaft was accom- 

plished via a belt drive from the dc electric motor, which varied the oscillation frequency 

smoothly. The pipe, of internal diameter 2R = 0.04 m and length Lo = 5.485 m was made up 
of 5 parts, so that the experiments could be conducted with various system lengths. The 
pipe was attached to the compressor cylinder by means of a conical adapter of height h = 
0.i m. 

The motor frequency of rotation was measured as follows. During rotation ofthe pulley, 
light from an incandescent lamp passed through holes in the pulley and fell on a photoresistor, 
from which the signal was recorded with a type ChZ-33 frequency meter. 

The pressure was measured with a type LKh-610 piezosensor whose signal went to one of 
the axes of a two-beam type SI-16 electronic oscilloscope. The velocities were measured with 

a constant temperature thermoanemometer, arranged as in [25]. The thermoanemometer signal 
went to the second oscilloscope channel. The pressure and the velocity were measured at the 
same point of the pipe. 

It is known [26] that the static and dynamic calibrations of a constant temperature 
the rmoanemometer coincide. Therefore, the anemometer sensor was calibrated in terms of mean 
velocity. 

The oscillograms of the oscillations were recorded photographically. The pressure and 
velocity oscillograms obtained are complex curves containing discontinuities, and, in addi- 
tion, the anemometer appears to "rectify" the signal, so that the frequency of the velocity 

oscillations on the oscillogram turn out to be twice the pressure oscillation frequency. The 
velocity oscillograms were reduced on the assumption that the average flow velocity is zero. 
Then, by taking the mirror reflection of half of the period of the velocity oscillations 

relative to the abscissa axis, one can construct the velocity oscillogram for the whole 
period. A complete Fourier analysis of the signals would be a laborious process, and, 
therefore, as in [13], on the oscillograms we measured the so-called scale, i.e., the dif- 
ference between the maximum and minimum values for the pressure and velocity oscillations. 
In the linear resonance case one can assume that one half of the scale corresponds, approxi- 

mately, to the amplitude of the pressure and velocity oscillations. In the other cases one 
can postulate that there is proportionality between the scale and the amplitude, but no more 
than that. From the ratio of the scale to theatmospheric pressure one can calculate the di- 

mensionless scale of the pressure fluctuations. The ratio of the velocity fluctuation scale 
u to the speed of sound in the unperturbed medium ao is called the dimensionless velocity 

scale. 

According to [13], to form continuous oscillations one requires that the ratio of the 

reduced amplitude of motion of the piston 

I := m21o,  (3) 

where m = Ro/R, to the reduced pipe length L 

L=Lo4 m21o+( m 2 + m +  l) h/3 (4) 

s h o u l d  be  m o r e  t h a n  0 . 0 6 4 .  I n  o u r  c a s e  t h i s  p a r a m e t e r  ~ = l / L  h a s  v a l u e s  w h i c h  a r e  0 . 0 2 7 ,  
0 . 0 3 2 ,  0 . 0 4 1 ,  r e s p e c t i v e l y .  

Figure i shows a series of oscillograms, corresponding to a pipe length Lo = 3.485 m 
with self-frequency mi/2~ = 22 Hz, at various frequencies of piston fluctuation and at var- 
ious distances x = 2 m from the end of the pipe. In each frame the upper curve is an oscillo- 
gram of the velocity fluctuations, and the lower curve shows the pressure fluctuations. The 
piston oscillation frequency increases in successive frames, although the frequency of the 
oscilloscope sweep generator was varied in an arbitrary manner. At frequencies far from the 
first nonlinear resonance the velocity fluctuations have a symmetric shape, and the pressure 
fluctuations are weak and discontinuous. In addition, in the pressure drop section there is 
a positive small pressure peak. With increase of frequency the discontinuity in the veloc- 
ity drop section becomes noticeable, and the amplitude of the additional pressure peak in- 
creases; there is also an increase in the scales of the pressure oscillations (frames 2-3). 
In addition, a supplementary peak appears in the sections where the velocity is decreasing 
(frame 2). It is not difficult to see that the velocity scales then decrease, and that the 
velocity oscillogram has a "saddle" point at the first nonlinear resonance (~/w1 = 0.5, 
frame 4), as predicted by Keller [12], with the same value of peak heights. Subsequently, 
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Fig. i. Oscillograms of the fluctuations of velocity 
(upper) and of pressure (lower) at distances x = 2 m from 
the open end of the pipe of length Lo = 3.485 m (~i/2~ = 
22 Hz) for frequencies: i) ~/wl = 0.41; 2) 0.46; 3) 0.47; 
4) 0.50; 5) 0.52; 6) 0.55; 7) 0.64; 8) 0.69; 9) 0.73; i0) 
0.87; ii) 0.96; 12) 1.0; 13) 1.2; 14) 1.28; 15) 1.37; 16) 
1.42; 17) 1.46; 18) 1.50. 

r 

Fig. 2. Oscillograms of pressure (upper) and of velocity 
(lower curve) for the linear (a) (i -- x/Lo = 0.861; 2 -- 
0.287; 3 -- X/Lo = 0; w~/2~ = 22 Hz), for the first nonlinear 
(b) (x/Lo = O, ~/2~ = ii Hz),and for the second nonlinear 
resonance (c) (x/Lo = 0, m~/2~ = 33 Hz) in a pipe of length 
Lo = 3.485 m. 

the amplitude of the main velocity peak decreases, while that of the supplementary peak in- 
creases until the velocity fluctuation oscillograms lose their symmetric shape. The scale 
of the velocity fluctuations grows (frames 5, 6). In the pressure oscillograms the decrease 
in the main peak and the increase in the supplementary peak are at higher frequencies, so that 
the formation of a "saddle point" with equal peaks is completed only at frequency ~/~ = 0.55 
when the velocity oscillograms take on a symmetric shape (frame 6). Further increase in the 
piston frequency is accompanied by a decrease in the velocity, and a subsequent increase 
(frames 7-12) with the shape of the fluctuations being maintained. The symmetric shape of 
the pressure fluctuations appears at frequency w/~ = 0.87 (frame i0). Finally (frame 12), 
the first linear resonance sets in, with maxima in the velocity and pressure scales, and 
here the supplementary peak appears in the growth section. If one moves from the first linear 
resonance towards higher frequencies one finds that the symmetry is lost, there is a decrease 
in the main velocity peak, and the supplementary peak appears and grows in the velocity and 
pressure oscillograms. In contrast with the first nonlinear resonance, the saddle point in 
the pressure oscillogram at the frequency of the second nonlinear resonance ~/ml = 1.5 (frame 
18) is formed below. The maxima of the pressure and velocity scales are observed at the same 
frequency as that of the second nonlinear resonance (frame 18). In the frame corresponding 
to w/wl = 1.42, the saddle point with the same values of the velocity and pressure peaks 
points downwards, and here the velocity scale is a minimum. 

Figure 2 shows oscillograms of velocity and pressure oscillations for the linear (a), 
the first nonlinear (b), and the second nonlinear resonances (c) in a pipe of length Lo = 
3.485 m. It can be seen that, for the linear and the second nonlinear resonances, shock 
waves are emitted from the open end of the pipe, while the pressure oscillogram has a sym- 
metric and continuous shape for the first nonlinear resonance. Similar discontinuities may 
be seen also in the velocity oscillograms. It is not difficult to see, in addition, that the 
change in the symmetry and the appearance of the discontinuity are observed even close to the 
piston (frame i, Fig. 2a). 
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Fig. 3. Distribution of the dimension- 
less velocity scale u/ao (1-3) and the 
dimensionless pressure scale AP/Por(4-6) 
along the pipe: a) Lo = 3.485 m; b) 
4.485; c) 5.$85 m; i, 5) linear reso- 
nance; 2, 6) first nonlinear resonance; 
3, 4) second nonlinear resonance. 

For the linear and the second nonlinear resonances, in addition to the peak, one also 
observes an intermediate discontinuity of smaller amplitude. Corresponding velocity discon- 
tinuities coincide in phase with the pressure fluctuations. The supplementary pressure peak 
appears even for the first nonlinear resonance, but it does not lead to the formation of a 

discontinuity. 

Computation of the number n from the test data for the linear and the first nonlinear 
resonances shows that n = 0.5 in the system. This agrees with the data of [6-8] and is 
noticeably in contrast with other results [2, 3]. 

Figure 3 shows the distribution of the dimensionless scale of the velocity fluctuations 
and the dimensionless pressure scale for the linear (i, 5), the first nonlinear (2, 6), and 
the second nonlinear resonances (3, 4) for various pipe lengths. 

The dimensionless scale of velocity fluctuations is a maximum at the open end of the 
pipe, for all the resonances; the scale decreases smoothly as one approaches the piston. The 
shorter the pipe the greater the velocity fluctuation scale. No influence of pipe length 

can be seen near the piston. 

The dimensionless scale of the pressure fluctuations in the first nonlinear and linear 
resonances increases smoothly with increasing distance from the open end of the pipe. A 
change in pipe length causes a small change in the dimensionless pressure scale for the first 

nonlinear resonance. However, the influence of pipe length on the pressure scale is more 

significant for the linear resonance. 

The pressure scale near the piston in the linear resonance is greater by approximately 
a factor of three than for the first nonlinear resonance. At the same time there is only a 
twofold increase in the dimensionless velocity fluctuation scale near the open end of the 

pipe. 

The dependence of the dimensionless pressure fluctuation scale near the piston on the 
dimensionless velocity fluctuation scale at the open end in the linear resonance case can 
easily be correlated by the relation 

AP u 

P--S = a0 (5) 

where  8--~ 1 .5  f o r  a l l  p i p e  l e n g t h s .  U s i n g  t h e  t h e o r e t i c a l  r e s u l t s  of  [6 ,  7 ] ,  one can  e s t a b -  
l i s h  a s i m i l a r  r e l a t i o n s h i p  b e t w e e n  p r e s s u r e  a t  t h e  p i s t o n  and t h e  v e l o c i t y  a t  t h e  p i p e  e x i t  
with ~ = 1.4. The small difference in values of B lies within the experimental error. 

Keller [12] has shown that for nonlinear resonances the amplitudes of the pressure and 
velocity fluctuations are complex functions of the piston motion amplitude I and of the length 
of the connecting rod driving the piston, as well as of the oscillation frequency. Since we 
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TABLE i. Comparison of Calculated and Experimental 

Values of u/Co and AP/Po 

Pipe ~ngth, m 3,4s5 4,485 5,485 

u~ T~ory  0,48 0,42 0,36 
ao I Experiment 0,52 0,39 0,32 

AP Theo~ 0,48 0,42 0,37 
Po Experiment O, 52 O, 40 O, 28 

do not have a fornmla for calculating the reduced length of the connecting rod, we can assume 
arbitrarily that the connecting rod length is calculated in the same way as the reduced ampli- 
tude of the piston displacement. Then the generalized parameter K, which has an appreciable 
influence on the amplitude of oscillations in the first nonlinear resonance, will vary in 
our conditions over the range 35-56. Table 1 shows estimates of the dimensionless fluctua- 
tions of pressure near the piston, and of velocity at the open end of the pipe, calculated 
from the Keller theory [12], and the corresponding experimental data. 

For the second nonlinear resonance the dimensionless pressure fluctuation scale is dis- 
tributed along the pipe like the second harmonic in a semiopen pipe, with an antinode of 
pressure near the piston, and a node of pressure and an an tinode of velocity near the open 
end of the pipe. A decrease in pipe length causes an increase in the pressure scale. 

It should be noted that the maximum in the dimensionless pressure fluctuation is larger 
by a factor of 1.5 than the pressure maximum in the linear resonance, which agrees with the 
results of [13], but indicates that the conditions at the open end have altered, i.e., one 
cannot regard the pipe as open. 

The nature of the distribution of the dimensionless velocity scale shows thatthe velo- 
city is a maximum near the open end, varies smoothly with distance from it, and reaches a 
minimum; then one can note a tendency to increase. No influence of pipe length on the velo- 
city fluctuations was observed. In addition, the velocity at the open end is less by a fac- 
tor of two than the dimensionless velocity scale in the linear resonance, and is on the same 
order as the velocity in the first nonlinear resonance. This circumstance is in poor agree- 
ment with the Keller theory [12], which indicates that the maximum velocity fluctuation scale 
must be larger, by a factor of at least 3 than the velocity fluctuations at the first non- 
linear resonance. 

Figure 4 shows the dimensionless pressure scale AP/Po and the dimensionless velocity 
scale U/no as a function of the dimensionless frequency ~/~1:for a pipe of length Lo = 
3.485 m (w~/2~ = 22 Hz), at various distances from the open end. Resonances are observed on 
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Fig. 4. Dimensionless pressure scale 
AP/Po (1) and thedimensionless velocityscale 
u/ao (2)as afunction ofthe dimensionlessfre- 
quency ~/~i in a pipe with Lo = 3.485 m 
(mi/2~ = 22 Hz): a) x/Lo = 0; b) 0.287; 
c) 0.574; d) 861. 
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all the graphs, at frequencies w = 0.5~i, ~, and 1.5~i, respectively. It is easy to see 
that the maximum pressure sca~e coincides in frequency with the maximum velocity scale only 
for the linear resonance. For the first nonlinear resonance the maximum pressure is reached 
at the minimum velocity (c, d). For the second nonlinear resonance the maximum pressure near 
the piston and at the open end coincide with the maximum velocity (a). Inside the pipe (b, 
c) this evidently does not hold. 

Thus, by simultaneous measurement of velocity and pressure fluctuations over a wide fre- 
quency range, including the linear and nonlinear resonances, we have investigated the basic 
laws for resonances in open pipes. 

It has been shown that in this system, for the linear and first nonlinear resonances, 
there is a power relationship with exponent 0.5 between the amplitude of the fluctuations 
and the pressure near the piston (or the velocity at the open end) and the amplitude of pis- 
ton displacement. 

For the linear resonance the amplitude of the pressure fluctuations near the piston 
and the amplitude of the velocity fluctuations at the open end are linearly related, and the 
first nonlinear resonance is described satisfactorily by the Keller theory. 

NOTATION 

%o, piston stroke; Ro, piston diameter; R, internal diameter of the pipe; Lo, pipe 
length; h, height of conical adapter; ao, speed of sound in the unperturbed gas; u, scale 
of velocity fluctuations; ~, reduced amplitude of piston displacement; x, distance from the 
open end of the pipe; m, excitation frequency; ~i, ~, ~, self-frequencies for the linear, 
first nonlinear, and second nonlinear resonances; PI, maximum in the pressure fluctuations; 
P2, minimum in the pressure fluctuations; Po, atmospheric pressure; AP/Po = (PI -- P2)/Po, 
dimensionless scale of pressure fluctuations; ~, coefficient of proportionality; n, exponent; 
K, correlation parameter. 
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EXPERIMENTAL STUDY OF THERMOMECHANICAL OSCILLATIONS OF A CYLINDRICAL 

HEATER IN AN AIR MEDIUM WITH FREE CONVECTION 

S. E. Nesis and A. A. Kul'gin UDC 536.24 

It~is demonstrated experimentally that when appropriate conditions are fulfilled, 
oscillations in the heat liberation coefficient of an electrically heated wire 
vibrating in air are capable of parametrically exciting intense mechanical oscil- 
lations in the wire. 

The effect of low-frequency oscillations of a heater on its heat liberation to the sur- 
rounding medium have been studied by a number of authors [1-3]. In [4-6] it was observed 
that in an electrically heated wire with a weight suspended from its midpoint nondamping 
transverse oscillations may develop under certain conditions. The authors explained this by 
the phenomenon of thermoparametric amplification. 

The present authors have performed further studies of thermomechanical oscillations of 
a thin cylindrical heater, and of the role of heat exchange in the parametric resonance men- 
tioned above. 

We will enumerate the basic results obtained. 

i. It has been shown experimentally that the presence of a suspended weight is not neces- 
sary for excitation of nondamping wire oscillations. Experiments were performed on a wire 
held rigidly at both ends (l = 4~3 m, d = 4-10 -4 m) carrying dc current, theamplitude of 
which could be varied over a wide range. It was also possible to adjust the tension in the 
wire T with a micrometer worm mechanism. The mean temperature T over the wire volume was 
determined from the wire's electrical resistance. 

It developed that for each value of T there corresponded some interval of tension, in 
which wire oscillations were self-exciting. The amplitude of the oscillations A increased 
rapidly, reaching a limiting value A ~ , which was a function of the temperature difference 
(AT = T -- To) between the wire and the surrounding air: initially with increase in AT the 
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